WIP
This commit is contained in:
parent
efe933a185
commit
725e463992
0
lyric_search_new/__init__.py
Normal file
0
lyric_search_new/__init__.py
Normal file
4
lyric_search_new/sources/__init__.py
Normal file
4
lyric_search_new/sources/__init__.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
from . import cache
|
||||||
|
from . import genius
|
||||||
|
from . import spotify
|
||||||
|
from . import common
|
8
lyric_search_new/sources/cache.py
Normal file
8
lyric_search_new/sources/cache.py
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
#!/usr/bin/env python3.12
|
||||||
|
|
||||||
|
class Cache:
|
||||||
|
"""Cache Search Module"""
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
5
lyric_search_new/sources/common.py
Normal file
5
lyric_search_new/sources/common.py
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#!/usr/bin/env python3.12
|
||||||
|
SCRAPE_HEADERS = {
|
||||||
|
'accept': '*/*',
|
||||||
|
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64; rv:130.0) Gecko/20100101 Firefox/130.0',
|
||||||
|
}
|
25
lyric_search_new/sources/genius.py
Normal file
25
lyric_search_new/sources/genius.py
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
#!/usr/bin/env python3.12
|
||||||
|
|
||||||
|
from .. import private
|
||||||
|
from . import common
|
||||||
|
from aiohttp import ClientTimeout, ClientSession, ClientError
|
||||||
|
|
||||||
|
class Genius:
|
||||||
|
"""Genius Search Module"""
|
||||||
|
def __init__(self):
|
||||||
|
self.genius_url = private.genius_url
|
||||||
|
self.genius_search_url = f'{self.genius_url}api/search/song?q='
|
||||||
|
self.headers = common.SCRAPE_HEADERS
|
||||||
|
self.timeout = ClientTimeout(connect=2, sock_read=2.5)
|
||||||
|
|
||||||
|
async def search(self, artist: str, song: str):
|
||||||
|
"""
|
||||||
|
@artist: the artist to search
|
||||||
|
@song: the song to search
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
0
lyric_search_new/sources/spotify.py
Normal file
0
lyric_search_new/sources/spotify.py
Normal file
113
lyric_search_new/utils.py
Normal file
113
lyric_search_new/utils.py
Normal file
@ -0,0 +1,113 @@
|
|||||||
|
#!/usr/bin/env python3.12
|
||||||
|
|
||||||
|
from difflib import SequenceMatcher
|
||||||
|
from typing import List, Optional, Tuple
|
||||||
|
import re
|
||||||
|
|
||||||
|
# Example usage:
|
||||||
|
if __name__ == "__main__":
|
||||||
|
matcher = TrackMatcher(threshold=0.85)
|
||||||
|
|
||||||
|
candidate_tracks = [
|
||||||
|
"The Beatles - Hey Jude",
|
||||||
|
"Led Zeppelin - Stairway to Heaven",
|
||||||
|
"Queen - Bohemian Rhapsody",
|
||||||
|
"Pink Floyd - Comfortably Numb",
|
||||||
|
"The Beatles - Hey Jules", # Intentionally similar to "Hey Jude"
|
||||||
|
]
|
||||||
|
|
||||||
|
# Test cases
|
||||||
|
test_tracks = [
|
||||||
|
"The Beatles - Hey Jude", # Exact match
|
||||||
|
"Beatles - Hey Jude", # Similar match
|
||||||
|
"The Beatles - Hey Jules", # Similar but different
|
||||||
|
"Metallica - Nothing Else Matters", # No match
|
||||||
|
"Queen - bohemian rhapsody", # Different case
|
||||||
|
]
|
||||||
|
|
||||||
|
for test_track in test_tracks:
|
||||||
|
result = matcher.find_best_match(test_track, candidate_tracks)
|
||||||
|
if result:
|
||||||
|
match, score = result
|
||||||
|
print(f"Input: {test_track}")
|
||||||
|
print(f"Best match: {match}")
|
||||||
|
print(f"Similarity score: {score:.3f}\n")
|
||||||
|
else:
|
||||||
|
print(f"No good match found for: {test_track}\n")
|
||||||
|
|
||||||
|
class TrackMatcher:
|
||||||
|
"""Track Matcher"""
|
||||||
|
def __init__(self, threshold: float = 0.85):
|
||||||
|
"""
|
||||||
|
Initialize the TrackMatcher with a similarity threshold.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
threshold (float): Minimum similarity score to consider a match valid
|
||||||
|
(between 0 and 1, default 0.85)
|
||||||
|
"""
|
||||||
|
self.threshold = threshold
|
||||||
|
|
||||||
|
def find_best_match(self, input_track: str, candidate_tracks: List[str]) -> Optional[Tuple[str, float]]:
|
||||||
|
"""
|
||||||
|
Find the best matching track from the candidate list.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
input_track (str): Input track in "ARTIST - SONG" format
|
||||||
|
candidate_tracks (List[str]): List of candidate tracks in same format
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Optional[Tuple[str, float]]: Tuple of (best matching track, similarity score)
|
||||||
|
or None if no good match found
|
||||||
|
"""
|
||||||
|
if not input_track or not candidate_tracks:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Normalize input track
|
||||||
|
input_track = self._normalize_string(input_track)
|
||||||
|
|
||||||
|
best_match = None
|
||||||
|
best_score = 0
|
||||||
|
|
||||||
|
for candidate in candidate_tracks:
|
||||||
|
normalized_candidate = self._normalize_string(candidate)
|
||||||
|
|
||||||
|
# Calculate various similarity scores
|
||||||
|
exact_score = 1.0 if input_track == normalized_candidate else 0.0
|
||||||
|
sequence_score = SequenceMatcher(None, input_track, normalized_candidate).ratio()
|
||||||
|
token_score = self._calculate_token_similarity(input_track, normalized_candidate)
|
||||||
|
|
||||||
|
# Take the maximum of the different scoring methods
|
||||||
|
final_score = max(exact_score, sequence_score, token_score)
|
||||||
|
|
||||||
|
if final_score > best_score:
|
||||||
|
best_score = final_score
|
||||||
|
best_match = candidate
|
||||||
|
|
||||||
|
# Return the match only if it meets the threshold
|
||||||
|
return (best_match, best_score) if best_score >= self.threshold else None
|
||||||
|
|
||||||
|
def _normalize_string(self, text: str) -> str:
|
||||||
|
"""
|
||||||
|
Normalize string for comparison by removing special characters,
|
||||||
|
extra spaces, and converting to lowercase.
|
||||||
|
"""
|
||||||
|
# Remove special characters and convert to lowercase
|
||||||
|
text = re.sub(r'[^\w\s-]', '', text.lower())
|
||||||
|
# Normalize spaces
|
||||||
|
text = ' '.join(text.split())
|
||||||
|
return text
|
||||||
|
|
||||||
|
def _calculate_token_similarity(self, str1: str, str2: str) -> float:
|
||||||
|
"""
|
||||||
|
Calculate similarity based on matching tokens (words).
|
||||||
|
"""
|
||||||
|
tokens1 = set(str1.split())
|
||||||
|
tokens2 = set(str2.split())
|
||||||
|
|
||||||
|
if not tokens1 or not tokens2:
|
||||||
|
return 0.0
|
||||||
|
|
||||||
|
intersection = tokens1.intersection(tokens2)
|
||||||
|
union = tokens1.union(tokens2)
|
||||||
|
|
||||||
|
return len(intersection) / len(union)
|
Loading…
x
Reference in New Issue
Block a user