This commit is contained in:
codey 2025-01-12 20:19:48 -05:00
parent efe933a185
commit 725e463992
7 changed files with 155 additions and 0 deletions

View File

View File

@ -0,0 +1,4 @@
from . import cache
from . import genius
from . import spotify
from . import common

View File

@ -0,0 +1,8 @@
#!/usr/bin/env python3.12
class Cache:
"""Cache Search Module"""
def __init__(self):
pass

View File

@ -0,0 +1,5 @@
#!/usr/bin/env python3.12
SCRAPE_HEADERS = {
'accept': '*/*',
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64; rv:130.0) Gecko/20100101 Firefox/130.0',
}

View File

@ -0,0 +1,25 @@
#!/usr/bin/env python3.12
from .. import private
from . import common
from aiohttp import ClientTimeout, ClientSession, ClientError
class Genius:
"""Genius Search Module"""
def __init__(self):
self.genius_url = private.genius_url
self.genius_search_url = f'{self.genius_url}api/search/song?q='
self.headers = common.SCRAPE_HEADERS
self.timeout = ClientTimeout(connect=2, sock_read=2.5)
async def search(self, artist: str, song: str):
"""
@artist: the artist to search
@song: the song to search
"""

View File

113
lyric_search_new/utils.py Normal file
View File

@ -0,0 +1,113 @@
#!/usr/bin/env python3.12
from difflib import SequenceMatcher
from typing import List, Optional, Tuple
import re
# Example usage:
if __name__ == "__main__":
matcher = TrackMatcher(threshold=0.85)
candidate_tracks = [
"The Beatles - Hey Jude",
"Led Zeppelin - Stairway to Heaven",
"Queen - Bohemian Rhapsody",
"Pink Floyd - Comfortably Numb",
"The Beatles - Hey Jules", # Intentionally similar to "Hey Jude"
]
# Test cases
test_tracks = [
"The Beatles - Hey Jude", # Exact match
"Beatles - Hey Jude", # Similar match
"The Beatles - Hey Jules", # Similar but different
"Metallica - Nothing Else Matters", # No match
"Queen - bohemian rhapsody", # Different case
]
for test_track in test_tracks:
result = matcher.find_best_match(test_track, candidate_tracks)
if result:
match, score = result
print(f"Input: {test_track}")
print(f"Best match: {match}")
print(f"Similarity score: {score:.3f}\n")
else:
print(f"No good match found for: {test_track}\n")
class TrackMatcher:
"""Track Matcher"""
def __init__(self, threshold: float = 0.85):
"""
Initialize the TrackMatcher with a similarity threshold.
Args:
threshold (float): Minimum similarity score to consider a match valid
(between 0 and 1, default 0.85)
"""
self.threshold = threshold
def find_best_match(self, input_track: str, candidate_tracks: List[str]) -> Optional[Tuple[str, float]]:
"""
Find the best matching track from the candidate list.
Args:
input_track (str): Input track in "ARTIST - SONG" format
candidate_tracks (List[str]): List of candidate tracks in same format
Returns:
Optional[Tuple[str, float]]: Tuple of (best matching track, similarity score)
or None if no good match found
"""
if not input_track or not candidate_tracks:
return None
# Normalize input track
input_track = self._normalize_string(input_track)
best_match = None
best_score = 0
for candidate in candidate_tracks:
normalized_candidate = self._normalize_string(candidate)
# Calculate various similarity scores
exact_score = 1.0 if input_track == normalized_candidate else 0.0
sequence_score = SequenceMatcher(None, input_track, normalized_candidate).ratio()
token_score = self._calculate_token_similarity(input_track, normalized_candidate)
# Take the maximum of the different scoring methods
final_score = max(exact_score, sequence_score, token_score)
if final_score > best_score:
best_score = final_score
best_match = candidate
# Return the match only if it meets the threshold
return (best_match, best_score) if best_score >= self.threshold else None
def _normalize_string(self, text: str) -> str:
"""
Normalize string for comparison by removing special characters,
extra spaces, and converting to lowercase.
"""
# Remove special characters and convert to lowercase
text = re.sub(r'[^\w\s-]', '', text.lower())
# Normalize spaces
text = ' '.join(text.split())
return text
def _calculate_token_similarity(self, str1: str, str2: str) -> float:
"""
Calculate similarity based on matching tokens (words).
"""
tokens1 = set(str1.split())
tokens2 = set(str2.split())
if not tokens1 or not tokens2:
return 0.0
intersection = tokens1.intersection(tokens2)
union = tokens1.union(tokens2)
return len(intersection) / len(union)