2025-01-19 07:01:07 -05:00

148 lines
4.9 KiB
Python

#!/usr/bin/env python3.12
from difflib import SequenceMatcher
from typing import List, Optional, Tuple
import logging
import regex
class TrackMatcher:
"""Track Matcher"""
def __init__(self, threshold: float = 0.85):
"""
Initialize the TrackMatcher with a similarity threshold.
Args:
threshold (float): Minimum similarity score to consider a match valid
(between 0 and 1, default 0.85)
"""
self.threshold = threshold
def find_best_match(self, input_track: str, candidate_tracks: List[tuple[int|str, str]]) -> Optional[Tuple[str, float]]:
"""
Find the best matching track from the candidate list.
Args:
input_track (str): Input track in "ARTIST - SONG" format
candidate_tracks (List[tuple[int|str, str]]): List of candidate tracks
Returns:
Optional[Tuple[int, str, float]]: Tuple of (best matching track, similarity score)
or None if no good match found
"""
if not input_track or not candidate_tracks:
return None
# Normalize input track
input_track = self._normalize_string(input_track)
best_match = None
best_score = 0
for candidate in candidate_tracks:
normalized_candidate = self._normalize_string(candidate[1])
# Calculate various similarity scores
exact_score = 1.0 if input_track == normalized_candidate else 0.0
sequence_score = SequenceMatcher(None, input_track, normalized_candidate).ratio()
token_score = self._calculate_token_similarity(input_track, normalized_candidate)
# Take the maximum of the different scoring methods
final_score = max(exact_score, sequence_score, token_score)
if final_score > best_score:
best_score = final_score
best_match = candidate
# Return the match only if it meets the threshold
return (best_match, round(best_score * 100)) if best_score >= self.threshold else None
def _normalize_string(self, text: str) -> str:
"""
Normalize string for comparison by removing special characters,
extra spaces, and converting to lowercase.
Args:
text (str): The text to normalize
Returns:
str: Normalized text
"""
# Remove special characters and convert to lowercase
text = regex.sub(r'[^\w\s-]', '', text).lower()
# Normalize spaces
text = ' '.join(text.split())
return text
def _calculate_token_similarity(self, str1: str, str2: str) -> float:
"""
Calculate similarity based on matching tokens (words).
Args:
str1 (str): string 1 to compare
str2 (str): string 2 to compare
Returns:
float: The token similarity score
"""
tokens1 = set(str1.split())
tokens2 = set(str2.split())
if not tokens1 or not tokens2:
return 0.0
intersection = tokens1.intersection(tokens2)
union = tokens1.union(tokens2)
return len(intersection) / len(union)
class DataUtils:
"""
Data Utils
"""
def __init__(self):
self.lrc_regex = regex.compile(r'\[([0-9]{2}:[0-9]{2})\.[0-9]{1,3}\](\s(.*)){0,}')
def scrub_lyrics(self, lyrics: str) -> str:
"""
Lyric Scrub Regex Chain
Args:
lyrics (str): The lyrics to scrub
Returns:
str: Regex scrubbed lyrics
"""
lyrics = regex.sub(r'(\[.*?\])(\s){0,}(\:){0,1}', '', lyrics)
lyrics = regex.sub(r'(\d?)(Embed\b)', '', lyrics, flags=regex.IGNORECASE)
lyrics = regex.sub(r'\n{2}', '\n', lyrics) # Gaps between verses
lyrics = regex.sub(r'[0-9]\b$', '', lyrics)
return lyrics
def create_lrc_object(self, lrc_str: str) -> list[dict]:
"""
Create LRC Object
Args:
lrc_str (str): The raw LRCLib syncedLyrics
Returns:
list[dict]: LRC Object comprised of timestamps/lyrics
"""
lrc_out: list = []
for line in lrc_str.split("\n"):
_timetag = None
_words = None
if not line.strip():
continue
reg_helper = regex.findall(self.lrc_regex, line.strip())
if not reg_helper:
continue
reg_helper = reg_helper[0]
logging.debug("Reg helper: %s for line: %s; len: %s",
reg_helper, line, len(reg_helper))
_timetag = reg_helper[0]
if not reg_helper[1].strip():
_words = ""
else:
_words = reg_helper[1]
lrc_out.append({
"timeTag": _timetag,
"words": _words,
})
return lrc_out